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Line Search Methods

Let f : Rn → R be given and suppose that xc is our current best
estimate of a solution to

P min
x∈Rn

f (x) .

Given d ∈ Rn, we construct the one dimensional function

φ(t) := f (xc + td) .

We can then try to approximately minimize φ.
We call d a search direction and the approximate solution t̄ the
stepsize or step length.
The new estimate of a solution to P is

x+ = xc + t̄d .

How should the search direction and stepsize be chosen.
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The Basic Backtracking Algorithm

Assume that f : Rn → R is differentiable and d ∈ Rn is a direction of
strict descent at xc , i.e., f ′(xc ; d) < 0.

Initialization: Choose γ ∈ (0, 1) and c ∈ (0, 1).

Having xc obtain x+ as follows:

Step 1: Compute the backtracking stepsize

t∗ := max γν

s.t. ν ∈ {0, 1, 2, . . .} and
f (xc + γνd) ≤ f (xc) + cγν f ′(xc ; d).

Step 2: Set x+ = xc + t∗d .
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The Basic Backtracking Algorithm

We need to show that the backtracking line search is well-defined
and finitely terminating.

Since f ′(xc ; d) < 0 and 0 < c < 1, we know

f ′(xc ; d) < cf ′(xc ; d) < 0.

Hence

f ′(xc ; d) = lim
t↓0

f (xc + td)− f (xc)

t
< cf ′(xc ; d) .

Therefore, there is a t > 0 such that

f (xc + td)− f (xc)

t
< cf ′(xc ; d) ∀ t ∈ (0, t),

that is

f (xc + td) < f (xc) + ctf ′(xc ; d) ∀ t ∈ (0, t).
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The Basic Backtracking Algorithm

So
f (xc + td) < f (xc) + ctf ′(xc ; d) ∀ t ∈ (0, t).

Since 0 < γ < 1, γν ↓ 0 as ν ↑ ∞, there is a ν0 such that γν < t̄
for all ν ≥ ν0.
Consequently,

f (xc + γνd) ≤ f (xc) + cγν f ′(xc ; d) ∀ ν ≥ ν0,

that is, the backtracking line search is finitely terminating.
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Programming the Backtracking Algorithm

Pseudo-Matlab code:

fc = f (xc)
∆f = cf ′(xc ; d)

newf = f (xc + d)
t = 1

while newf > fc + t∆f
t = γt

newf = f (xc + td)
endwhile
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Direction Choices

There are essentially three directions of interest:

1. Steepest Descent (or Cauchy Direction):

d = −∇f (xc)/‖∇f (xc)‖ .

2. Newton Direction:

d = −∇2f (xc)−1∇f (xc) .

3. Newton-Like Direction:

d = −H∇f (xc),

where H ∈ Rn×n is symmetric and constructed so that

H ≈ ∇2f (xc)−1 .

The Backtracking Line Search

Math 408A Line Search Methods



Outline One Dimensional Optimization and Line Search Methods

Direction Choices

There are essentially three directions of interest:

1. Steepest Descent (or Cauchy Direction):

d = −∇f (xc)/‖∇f (xc)‖ .

2. Newton Direction:

d = −∇2f (xc)−1∇f (xc) .

3. Newton-Like Direction:

d = −H∇f (xc),

where H ∈ Rn×n is symmetric and constructed so that

H ≈ ∇2f (xc)−1 .

The Backtracking Line Search

Math 408A Line Search Methods



Outline One Dimensional Optimization and Line Search Methods

Direction Choices

There are essentially three directions of interest:

1. Steepest Descent (or Cauchy Direction):

d = −∇f (xc)/‖∇f (xc)‖ .

2. Newton Direction:

d = −∇2f (xc)−1∇f (xc) .

3. Newton-Like Direction:

d = −H∇f (xc),

where H ∈ Rn×n is symmetric and constructed so that

H ≈ ∇2f (xc)−1 .

The Backtracking Line Search

Math 408A Line Search Methods



Outline One Dimensional Optimization and Line Search Methods

Direction Choices

There are essentially three directions of interest:

1. Steepest Descent (or Cauchy Direction):

d = −∇f (xc)/‖∇f (xc)‖ .

2. Newton Direction:

d = −∇2f (xc)−1∇f (xc) .

3. Newton-Like Direction:

d = −H∇f (xc),

where H ∈ Rn×n is symmetric and constructed so that

H ≈ ∇2f (xc)−1 .

The Backtracking Line Search

Math 408A Line Search Methods



Outline One Dimensional Optimization and Line Search Methods

Descent Condition

For all of these directions we have

f ′(xc ;−H∇f (xc)) = −∇f (xc)TH∇f (xc).

Thus, to obtain strict descent we need,

0 < ∇f (xc)TH∇f (xc) .

This holds, in particular, when H is positive definite.

In the case of steepest descent H = I and so

∇f (xc)TH∇f (xc) = ‖∇f (xc)‖22.

In all other cases, H ≈ ∇2f (xc)−1. The condition that H be pd is
related to the second-order sufficient condition for optimality, a
local condition.
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