Math 408A Line Search Methods

The Backtracking Line Search

One Dimensional Optimization and Line Search Methods

Line Search Methods

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given and suppose that x_{c} is our current best estimate of a solution to

$$
\mathcal{P} \quad \min _{x \in \mathbb{R}^{n}} f(x) .
$$

Line Search Methods

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given and suppose that x_{c} is our current best estimate of a solution to

$$
\mathcal{P} \quad \min _{x \in \mathbb{R}^{n}} f(x)
$$

Given $d \in \mathbb{R}^{n}$, we construct the one dimensional function

$$
\phi(t):=f\left(x_{c}+t d\right) .
$$

We can then try to approximately minimize ϕ.

Line Search Methods

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given and suppose that x_{c} is our current best estimate of a solution to

$$
\mathcal{P} \quad \min _{x \in \mathbb{R}^{n}} f(x)
$$

Given $d \in \mathbb{R}^{n}$, we construct the one dimensional function

$$
\phi(t):=f\left(x_{c}+t d\right) .
$$

We can then try to approximately minimize ϕ.
We call d a search direction and the approximate solution \bar{t} the stepsize or step length.

Line Search Methods

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given and suppose that x_{c} is our current best estimate of a solution to

$$
\mathcal{P} \quad \min _{x \in \mathbb{R}^{n}} f(x) .
$$

Given $d \in \mathbb{R}^{n}$, we construct the one dimensional function

$$
\phi(t):=f\left(x_{c}+t d\right) .
$$

We can then try to approximately minimize ϕ.
We call d a search direction and the approximate solution \bar{t} the stepsize or step length.
The new estimate of a solution to \mathcal{P} is

$$
x_{+}=x_{c}+\bar{t} d
$$

Line Search Methods

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given and suppose that x_{c} is our current best estimate of a solution to

$$
\mathcal{P} \quad \min _{x \in \mathbb{R}^{n}} f(x)
$$

Given $d \in \mathbb{R}^{n}$, we construct the one dimensional function

$$
\phi(t):=f\left(x_{c}+t d\right) .
$$

We can then try to approximately minimize ϕ.
We call d a search direction and the approximate solution \bar{t} the stepsize or step length.
The new estimate of a solution to \mathcal{P} is

$$
x_{+}=x_{c}+\bar{t} d
$$

How should the search direction and stepsize be chosen.

The Basic Backtracking Algorithm

Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and $d \in \mathbb{R}^{n}$ is a direction of strict descent at x_{c}, i.e., $f^{\prime}\left(x_{c} ; d\right)<0$.

The Basic Backtracking Algorithm

Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and $d \in \mathbb{R}^{n}$ is a direction of strict descent at x_{c}, i.e., $f^{\prime}\left(x_{c} ; d\right)<0$.

Initialization: Choose $\gamma \in(0,1)$ and $c \in(0,1)$.

The Basic Backtracking Algorithm

Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and $d \in \mathbb{R}^{n}$ is a direction of strict descent at x_{c}, i.e., $f^{\prime}\left(x_{c} ; d\right)<0$.

Initialization: Choose $\gamma \in(0,1)$ and $c \in(0,1)$.

Having x_{c} obtain x_{+}as follows:

The Basic Backtracking Algorithm

Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and $d \in \mathbb{R}^{n}$ is a direction of strict descent at x_{c}, i.e., $f^{\prime}\left(x_{c} ; d\right)<0$.

Initialization: Choose $\gamma \in(0,1)$ and $c \in(0,1)$.

Having x_{c} obtain x_{+}as follows:

STEP 1: Compute the backtracking stepsize

$$
\begin{aligned}
t^{*}:= & \max \gamma^{\nu} \\
& \text { s.t. } \nu \in\{0,1,2, \ldots\} \text { and } \\
& f\left(x_{c}+\gamma^{\nu} d\right) \leq f\left(x_{c}\right)+c \gamma^{\nu} f^{\prime}\left(x_{c} ; d\right) .
\end{aligned}
$$

The Basic Backtracking Algorithm

Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and $d \in \mathbb{R}^{n}$ is a direction of strict descent at x_{c}, i.e., $f^{\prime}\left(x_{c} ; d\right)<0$.

Initialization: Choose $\gamma \in(0,1)$ and $c \in(0,1)$.

Having x_{c} obtain x_{+}as follows:

STEP 1: Compute the backtracking stepsize

$$
\begin{aligned}
t^{*}:= & \max \gamma^{\nu} \\
& \text { s.t. } \nu \in\{0,1,2, \ldots\} \text { and } \\
& f\left(x_{c}+\gamma^{\nu} d\right) \leq f\left(x_{c}\right)+c \gamma^{\nu} f^{\prime}\left(x_{c} ; d\right) .
\end{aligned}
$$

Step 2: Set $x_{+}=x_{c}+t^{*} d$.

The Basic Backtracking Algorithm

We need to show that the backtracking line search is well-defined and finitely terminating.

The Basic Backtracking Algorithm

We need to show that the backtracking line search is well-defined and finitely terminating.
Since $f^{\prime}\left(x_{c} ; d\right)<0$ and $0<c<1$, we know

$$
f^{\prime}\left(x_{c} ; d\right)<c f^{\prime}\left(x_{c} ; d\right)<0
$$

The Basic Backtracking Algorithm

We need to show that the backtracking line search is well-defined and finitely terminating.
Since $f^{\prime}\left(x_{c} ; d\right)<0$ and $0<c<1$, we know

$$
f^{\prime}\left(x_{c} ; d\right)<c f^{\prime}\left(x_{c} ; d\right)<0 .
$$

Hence

$$
f^{\prime}\left(x_{c} ; d\right)=\lim _{t \downarrow 0} \frac{f\left(x_{c}+t d\right)-f\left(x_{c}\right)}{t}<c f^{\prime}\left(x_{c} ; d\right) .
$$

The Basic Backtracking Algorithm

We need to show that the backtracking line search is well-defined and finitely terminating.
Since $f^{\prime}\left(x_{c} ; d\right)<0$ and $0<c<1$, we know

$$
f^{\prime}\left(x_{c} ; d\right)<c f^{\prime}\left(x_{c} ; d\right)<0 .
$$

Hence

$$
f^{\prime}\left(x_{c} ; d\right)=\lim _{t \downarrow 0} \frac{f\left(x_{c}+t d\right)-f\left(x_{c}\right)}{t}<c f^{\prime}\left(x_{c} ; d\right) .
$$

Therefore, there is a $\bar{t}>0$ such that

$$
\frac{f\left(x_{c}+t d\right)-f\left(x_{c}\right)}{t}<c f^{\prime}\left(x_{c} ; d\right) \quad \forall t \in(0, \bar{t}),
$$

that is

$$
f\left(x_{c}+t d\right)<f\left(x_{c}\right)+c t f^{\prime}\left(x_{c} ; d\right) \quad \forall t \in(0, \bar{t}) .
$$

The Basic Backtracking Algorithm

So

$$
f\left(x_{c}+t d\right)<f\left(x_{c}\right)+c t f^{\prime}\left(x_{c} ; d\right) \quad \forall t \in(0, \bar{t}) .
$$

The Basic Backtracking Algorithm

So

$$
f\left(x_{c}+t d\right)<f\left(x_{c}\right)+c t f^{\prime}\left(x_{c} ; d\right) \quad \forall t \in(0, \bar{t}) .
$$

Since $0<\gamma<1, \gamma^{\nu} \downarrow 0$ as $\nu \uparrow \infty$, there is a ν_{0} such that $\gamma^{\nu}<\bar{t}$ for all $\nu \geq \nu_{0}$.

The Basic Backtracking Algorithm

So

$$
f\left(x_{c}+t d\right)<f\left(x_{c}\right)+c t f^{\prime}\left(x_{c} ; d\right) \quad \forall t \in(0, \bar{t}) .
$$

Since $0<\gamma<1, \gamma^{\nu} \downarrow 0$ as $\nu \uparrow \infty$, there is a ν_{0} such that $\gamma^{\nu}<\bar{t}$ for all $\nu \geq \nu_{0}$.
Consequently,

$$
f\left(x_{c}+\gamma^{\nu} d\right) \leq f\left(x_{c}\right)+c \gamma^{\nu} f^{\prime}\left(x_{c} ; d\right) \quad \forall \nu \geq \nu_{0},
$$

that is, the backtracking line search is finitely terminating.

Programming the Backtracking Algorithm

Pseudo-Matlab code:

$$
\left[\begin{array}{rl}
f_{c} & =f\left(x_{c}\right) \\
\Delta f & =c f^{\prime}\left(x_{c} ; d\right) \\
\text { new } f & =f\left(x_{c}+d\right) \\
t & =1 \\
\text { while new } f & >f_{c}+t \Delta f \\
t & =\gamma t \\
\text { new } f & =f\left(x_{c}+t d\right) \\
\text { endwhile }
\end{array}\right.
$$

Direction Choices

There are essentially three directions of interest:

Direction Choices

There are essentially three directions of interest:

1. Steepest Descent (or Cauchy Direction):

$$
d=-\nabla f\left(x_{c}\right) /\left\|\nabla f\left(x_{c}\right)\right\| .
$$

Direction Choices

There are essentially three directions of interest:

1. Steepest Descent (or Cauchy Direction):

$$
d=-\nabla f\left(x_{c}\right) /\left\|\nabla f\left(x_{c}\right)\right\| .
$$

2. Newton Direction:

$$
d=-\nabla^{2} f\left(x_{c}\right)^{-1} \nabla f\left(x_{c}\right) .
$$

Direction Choices

There are essentially three directions of interest:

1. Steepest Descent (or Cauchy Direction):

$$
d=-\nabla f\left(x_{c}\right) /\left\|\nabla f\left(x_{c}\right)\right\| .
$$

2. Newton Direction:

$$
d=-\nabla^{2} f\left(x_{c}\right)^{-1} \nabla f\left(x_{c}\right) .
$$

3. Newton-Like Direction:

$$
d=-H \nabla f\left(x_{c}\right),
$$

where $H \in \mathbb{R}^{n \times n}$ is symmetric and constructed so that

$$
H \approx \nabla^{2} f\left(x_{c}\right)^{-1}
$$

Descent Condition

For all of these directions we have

$$
f^{\prime}\left(x_{c} ;-H \nabla f\left(x_{c}\right)\right)=-\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right) .
$$

Descent Condition

For all of these directions we have

$$
f^{\prime}\left(x_{c} ;-H \nabla f\left(x_{c}\right)\right)=-\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right) .
$$

Thus, to obtain strict descent we need,

$$
0<\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right)
$$

Descent Condition

For all of these directions we have

$$
f^{\prime}\left(x_{c} ;-H \nabla f\left(x_{c}\right)\right)=-\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right) .
$$

Thus, to obtain strict descent we need,

$$
0<\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right) .
$$

This holds, in particular, when H is positive definite.

Descent Condition

For all of these directions we have

$$
f^{\prime}\left(x_{c} ;-H \nabla f\left(x_{c}\right)\right)=-\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right) .
$$

Thus, to obtain strict descent we need,

$$
0<\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right) .
$$

This holds, in particular, when H is positive definite.
In the case of steepest descent $H=I$ and so

$$
\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right)=\left\|\nabla f\left(x_{c}\right)\right\|_{2}^{2} .
$$

Descent Condition

For all of these directions we have

$$
f^{\prime}\left(x_{c} ;-H \nabla f\left(x_{c}\right)\right)=-\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right) .
$$

Thus, to obtain strict descent we need,

$$
0<\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right) .
$$

This holds, in particular, when H is positive definite.
In the case of steepest descent $H=I$ and so

$$
\nabla f\left(x_{c}\right)^{T} H \nabla f\left(x_{c}\right)=\left\|\nabla f\left(x_{c}\right)\right\|_{2}^{2} .
$$

In all other cases, $H \approx \nabla^{2} f\left(x_{c}\right)^{-1}$. The condition that H be pd is related to the second-order sufficient condition for optimality, a local condition.

